Nilpotence and descent in equivariant stable homotopy theory
نویسندگان
چکیده
منابع مشابه
Nilpotence in Stable Homotopy Theory
This talk covers most of section 4 in the Mathew-Naumann-Noel paper [MNN15]. We first discuss nilpotence in an arbitrary symmetric monoidal stable ∞-category. We then discuss the historical origins of nilpotence in the stable homotopy category, namely the Ravenel conjectures and the Nilpotence theorem proved by Devinatz-Hopkins-Smith.
متن کاملNilpotence and Periodicity in Stable Homotopy Theory
Contents Preface xi Introduction xiii 1 The main theorems 1 1.
متن کاملEquivariant stable homotopy theory
We will study equivariant homotopy theory for G a finite group (although this often easily generalizes to compact Lie groups). The general idea is that if we have two G-spaces X and Y , we’d like to study homotopy classes of equivariant maps between them: [X,Y ] = Map(X,Y )/htpy, where Map(X,Y ) = {f : X → Y |f(gx) = gf(x) for all g ∈ G}. In classical homotopy theory (i.e. when G is the trivial...
متن کاملSpectral Sequences in (equivariant) Stable Homotopy Theory
1. The homotopy fixed-point spectral sequence: 5/15/17 Today, Richard spoke about the homotopy fixed-point spectral sequence in equivariant stable homotopy theory. We’ll start with the Bousfield-Kan spectral sequence (BKSS). One good reference for this is Guillou’s notes [4], and Hans Baues [2] set it up in a general model category. We’ll work in sSet, so that everything is connective. Consider...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2017
ISSN: 0001-8708
DOI: 10.1016/j.aim.2016.09.027